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For a given impulse function, which describes the influence of apparatus on a data stream, 
we deconvolved the noisy data by two procedures. The first method develops an iterative 
scheme that searches for a solution that simultaneously is a best least-squares fit to the data 
and has minimum iength. The second procedure applies the method of circulants to obtain a 
very fast approximation to the first. Good results are obtained for a synthetic problem 

utilizing a digital computer. 

1. INTRODUCTION AND SUMMARY 

Many observations of physical phenomena are burdened with noise, which 
interferes with the reduction of the data. Additionally, the data analysis is further 
complicated by the modification of the data stream by the observing equipment. The 
equipment is considered to be the concatenation of hardware, observer, and reduction 
procedures and associated computing machinery. We do not consider quantum effects 
Ill* 

Deconvolution of the signatures of physical phenomena from the data stream has 
been a major effort for many years 12-51. From this effort two factors emerge. An 
estimation procedure must take account of noise and the effects of the observing 
equipment. The presence of noise requires that we abandon the concepts of an exact 
de~onvolution and search for an estimator. In one guise or another, the effect of noise 
is treated by filtering the data stream. The effects of the observing equipment are 
described in the deconvolution procedure by an impulse function which may or may 
not consolidate several different characteristics of the equipment. In the following 
analysis the impulse function will be presumed to have either been measured or 
calculated from known properties of the observing system. The sequencing of the two 
factors in a de~onvolution procedure may be either in tandem or parallel. 

We shall consider digitized data streams and apply contemporary computer 
techniques. We have already treated the non-noisy case by cepstral operators [6J on a 
digital computer. The cepstral operator, acting on a time series separates convolved 
factors a,(t) * az(t)... to a sum a^,( T) + c&( 7) + . . . . This procedure requires miniscule 
computer time. In the following we will show that the noisy case can also be treated 
with the expenditure of very little computer time. 
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In the second section we describe a method which is well justified theoretically and 
give a procedure to solve the atrociously ill-conditioned equations which result. 
Considerable computational effort is required. In the third section we show how to 
modify that method to one for which, although not so well-justified theoretically. the 
basic equations can be easily solved by fast Fourier transform methods. In the fourth 
section we illustrate the methods of Sections 2 and 3 with a numerical example. We 
find that the quality of the deconvolution we obtain with the quick method of 
Section 3 is not degraded with respect to the computationally more costly method of 
Section 2. In the final section, we compare the quality of our deconvolution with that 
of another method now in use, 

2. METHOD OF MINIMUM LENGTH 

The general problem we are now addressing refers to the case where experimental 
observations are taken at equally spaced intervals. The instrumental convolution 
factor is assumed to be known and uncorrelated random noise is present in addition 
to the convolved signal in the experimental observations. We contemplated the case 
where the observations are taken sufficiently often so that the noise-free curve is a 
relatively smooth function of time. Although various criteria for a smoothing fit to 
the data, f(x). have been proposed, we prefer following Baker ] 7 ] 

6 ij” (f’)2 dx 1 = 0 
* (2.1) 

because we feel instinctively that the shortest curve would be the best one. The length 
of a curve is well known to be 

j* ds = 1’ [ 1 + (f’)2]‘.i2 dx. f2.2) 
* = (i I I, 

Plainly, however, this condition is not independent of the scale for J: To derive a 
related, scale-free criterion we introduce a scale factor, E, which we think of as very 
small. Then (2.2) becomes 

jb [ 1 + @‘)‘I”* dx = b -a + $&* ,( (f’)* dx + O(E~). 
a 

(2.3) 

As the variation 6{b - a) = 0 for this problem, we obtain, to leading order in E, the 
scale-free criterion (2.1) for the smoothest curve. 

For physically reasonable instrumentai factors, the output signal comes either after 
or coincidentally with the input signal, and never before. Further, the absolute time 
does not matter, but only the delay between the input and the output signals. Thus for 
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our discrete data with yi the observations, 6 the true signals, we can represent the 
instrumental factor as M, and we have the relation 

Yi=“tjf,+ErT (2.4) 

where &i is the random noise, and as explained above M, is a lower triangular matrix 
of the form 

M, = T(i -j) (2.5) 

and where 

T(k) = 0 if k < 0 or k > K. (2.6) 

The latter requirement says that the output signal drops to zero a finite period of time 
after the input ceases. We will employ the convention that repeated subscripts are to 
be summed over. 

In addition to the requirement that the functionf, be smooth, we certainly wish to 
require that it fit the experimental data. Thus we are lead to impose 

(2.7) 

a least-squares procedure. If available, a knowledge of the expected value of E: could 
be used to determine an acceptable value of S,. We now impose that the discrete 
analogue of (2.1) hold, subject to the constraint (2.7) by the standard method of 
Lagrange multipliers. Define 

with the boundary conditions f, =f,+ , = 0 for added stability. The minimizing 
equations are 

where II is adjusted to impose (2.7). Working out (2.9) we obtain 

f;:.+ I- 2f;, +&-I + ~JJ~M$(Y~ - Mj*fk) = 0, i = I,.,,, N, (2.10) 

M$ is the transpose matrix to Mij and A is the spacing in X. 
In order to solve (2.10), which is found to be a rather ill-conditioned set of 

equations, we have taken a somewhat round-about approach. First we note that 
although M, has all positive or zero entries, this fact alone does not make it a 
positive deAnite matrix. For ease in computation we select a p such that 
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is a positive definite matrix. In terms of it, we can rewrite (2.10) as 

V’-A+,-A-1 +2’A(.n$;,-~t16i,)‘(.~~-ill~jiik)fk 

= 2dAkf; yj. (2.12) 

By adding common terms to both sides of (2.12), it can be modified to yield 

y-“zfJ + (2hA,~’ f Ai- - Ai)fi + 2JAb.ep4,fk 

The purpose of form (2.13) is to allow us to follow the method of Baker and 
Oliphant [8]. We propose to solve (2.13) by an iteration in an artificial time. The 
left-hand side will be at the present artificial time and the right-hand side will be 
constructed from values f at previous artifical times. We now use the tirst term on the 
left-hand side taken together with the second term on the right-hand side to represent 

(2.14) 

It is at this step that. 4’: be positive definite is important as otherwise some modes in 
our iterative procedures would have turned out to diverge instead of converge. If we 
used the standard, 3-point forward difference approximation for the artificial time 
derivative 

(2.15) 

then we are lead to select the free parameter y which we introduced as 

y = ;(At)-‘, J = jj-tn-- 1’ _ +“p-2t~ (2.16) 

where we will substitute fi for f, on the right side of (2.13). Since (2.13) was specially 
constructed to factorize, we may write it as 

(2.17) 
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The solution procedure is now to write (2.17) as two equations 

= 2LA.M; yj + (y + 2Mp) &A 

2JA 
+- y (YP + 214~~ + Ai_, - Ai).d;x, 

(YSj, + 2Mx4k)fp’ = gj”‘. (2.19) 

Now Eq. (2.19) is of lower triangular form so that it can be solved directly by 
elimination. Equation (2.18) is an upper triangular system, plus one subdiagonal. 
This system by itself is badly conditioned and its direct inversion is wildly imprac- 
ticable. Instead, we use an iteration procedure and break (2.18) down as 

MG+i(2iA/J2 + 2)6, gj=y-‘(g,*_, +gi*,l) 
I 

+ RHS of (2.18), (2.20) 

where g$ = gz = 0. To solve (2.18) we first guess 

g? = (ydj, + 2M..eQj;, (2.2 1) 

and solve the upper triangular set of Eqs. (2.20) by direct elimination for g,. We next 
form by linear extrapolation a new g? from gj and the old g? and resolve (2.20). We 
iterate this “minor cycle” until the desired accuracy of solution is obtained as 
measured by agreement between g* and g. Using this value of g as gcn) we solve 
(2.19) for fCn). This step completes a “major cycle”: to begin a new major cycle we 
compute a new $ from (2.16). To start the procedure off we have either used 

or cepstral operations [6]. Note is made that to use (2.22) we need T(1) # 0. The 
major cycle iterations, advancing toward the asymptotic limit in artifical time, are 
continued until the desired accuracy, as measured by the difference betweenf’“’ and 
f +“3 is obtained. 

The reader will have noticed that we have introduced a number of parameters, 
some arbitrary, into our procedure, namely A, the time interval spacing in obser- 
vations, 1 the Lagrange multiplier, p, the modifier of the convolution matrix, and y 
the inverse artificial time step. First the equations in fact depend only on (M) and 
not 1 and A separately. As mentioned above d and hence (a) is to be adjusted to 
impose (2.7). We have adjusted P so that the minor cycle iterations reduced the sum 
of the squares of the errors by about a factor 10 for every cycle. The faster we make 
the minor cycle run however, the slower the major cycle runs so this adjustment must 
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be selected with an eye to overall minimization of computational effort. Finally. 
guided by the results of Baker and Oliphant [ 81 we have selected 

y = 2Mp + SO/N. (2.23) 

As the choices of 1’ and ,U are linked, and we have not been able to make an 
exhaustive investigation, our selections may not be quite optimum, but we believe that 
they are not far off. 

3. METHOD OF CIRCULANTS 

The method described in the previous section is in principle an excellent one; 
however, quite a bit of computational effort is required to implement it. In this 
section we describe a variant of it which, though not quite so well based in principle. 
is computationally much simpler and in our experience gives virtually as good results. 

The basis of the method of this section is the observation that if M,, were a 
circulant then the basic equation (2.10) of the method of the previous section could 
be solved simply by finite Fourier transform methods, which can now 19 ] be 
performed very rapidly. A matrix is called a circulant if any row can be obtained 
from the proceeding one by passing the last element over the others to the first 
position. If K [Eq. (2.6)] is considerably smaller than the number of data points N, 
then if we expand M, to be a circulant C,,. we have 

Cl, = T((i -.Omod”loh) (3.1) 

so that C, differs from the lower triangular matrix M by some non-zero entries in the 
upper right-hand corner. If enough data has been taken so that all the y, [eq. (2.4)] 
which are significantly different from zero have been recorded then, we expect that 
the fj for j = N - K + l,..., N are substantial zero so .that the fj which (2.10) yields 
will come very close to satisfying (2.10) with Mij replaced by C,. The situation can 
be improved further if we expand the data set as 

z, = 0, j = l,..., K, 

zj =Yj-l( 3 j = K + l,..., K + N. (3.2) 

ZJ = 0, j=K+N+ l,...,N+2K+L=J, 

which amounts to introducing a null signal portion before and after the data. The 
effect of the change from M, to C, over this extended data set is to modify the first 
and last K equations and to leave the central N + L unmodified. Since the deviation 
of the first K equations is driven by the last K f’s we expect that for a large enough 
extension (L) of the data set that the last f’s and hence the first f’s will go substan- 
tially to zero. The vanishing of the first Kf’s can be easily verified to be a sufficient 
condition that the solution of this problem is equal to that of the previous section. 
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Formally, the problem we wish to solve in this section is 

f,+ 1 - 2fi +fi- ( + 2MCG(.Yj- Cj,fA) = O, i = l,.... J, (3.3) 

where fi+J =f, defines f0 and f,, , , and the definition of Cj, is given by (3.1) except it 
is modulo J instead of modulo N. Next we introduce the Fourier transform off 

n = l,..., J, 

where by standard theory, 

. &. = 1 (T exp(-2zinj/J)g,, 
fi “:I 

j = l,..., J. 

If we substitute (3.5) in (3.3) we obtain, after some manipulation, 

g = (kf/fi)[@)l* C:=, exPWn?/J) z, 
n 4 sin’(nn/J) + Ll It(n)/’ ’ 

(3.4) 

(3.5) 

(3.6) 

where * denotes complex conjugate, 1 1 denotes absolute value and we have defined 

t(n) = (’ T(I) exp(2?rinl/J). 
ITI 

The solution of (3.3) is now given by substitution of the values of g, in (3.5) to 
recover the f,. 

A convenient formula for the overall error is given by the Pareseval type relation. 

=J-1 ;’ 
16 sin”(nn/J)ICJJ=, exp(2ninj/J) zjl 

ll:l [4 sin’(rcn/J) + AA It(n)12]’ (3.8) 

This error, of course, is not identical with that of (2.7) owing to the presence of the 
2K + L extra zeros being fitted, but that error could be computed directly from the 
4:s obtained here. 

4. NUMERICAL RESULTS 

We now consider a common numerical example for both procedures. The object 
data is a 1024 point data sequence containing the letter M, whose central depth is 4 
its height. 

This sequence was convolved with the 1024 point sequence, Fig. 1, representing an 
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TIME 

FIG. 1. 1024 point sequence representing the impulse function (07/02/82. 14: 53: 5 I), 

impulse function. To this convolution we have added approximately 0.1 %I rms noise. 
The contaminated data stream, shown in Fig. 2, can no longer be deconvolved by a 
direct application of the cepstral operators [ 61. 

The impulse and data sequences comprise the inputs for a deconvolution 
procedure. We consider first the minimum length technique. There are several 
possibilities for ‘providing a starting solution. One rapid computational technique 

0.n 200.0 4OO.G BOO.c! BOO. 2 1000.3 1200.0 
TIME 

FIG. 2. 1024 point sequence representing the contaminated data stream (07/02/~2. 14: 52: 21). 
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Ti 0.0 2.0 4.0 6.0 8.0 10.0 12.0 
TIME 
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FIG. 3. Starting solution produced by deconcolving the data with the impulse function (07/02/82: 
14:56:06). 

would be to suitably filter the noisy data and apply the cepstral operators. Another 
approach which we now apply is to simply deconvolve the data stream with the 
impulse function. The result is the starting solution shown in Fig. 3. The iteration 
procedure is then initiated. Figures 4, 5, and 6 illustrate the state of deconvolution at 
50, 100, and 150 major cycles for 1 = 100. The filtering action, driven by the 

FIG. 4. Deconvolution at 50 cycles (07/02/82. 15:36:29). 
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FIG. 5. Deconvolutton at 100 cycles (07~02/82. 15: 40: 3 1). 

minimum length consideration, is clearly discernable. The effective tension in the 
filtering process is altered by changing the Lagrange multiplier. 

We now apply the method of circulants to the same input data. Comparison of 
Eqs. (2.8) and (3.3) indicates the modified role of A. We let the number of trailing 
zeros be 100 and deconvolved with E. = 1, 10, and 100. The respective results are 
shown in Figs. 7, 8, and 9. A different normalization owing to technical reasons was 

0 
w ‘1 

FIG. 6. Deconvolution at 150 cycles (07/02/82, 15:43: 14). 
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’ , , 1 ,--T----Y 
600.0 800.0 1000.0 1200.0 i400.0 1600.0 1800.0 

TIME 

FIG. 7. Deconvolution by the method of circulants with ,I = 1 (07/02/82, 15: 5 1: 53. KZ = 100). 

used to draw the figures by the two methods and is of no signi~cance. Changing the 
number of trailing zeros to 200 does not noticeably alter these results, although for a 
different type of impulse function or initial convolved data it might well. 

The minimum length procedure requires considerably more time on a digital 

nil I I 1 I I I 1 
600.0 800.0 1000.0 1200.0 1400.0 1600.0 1600.0 

TIME 

FIG. 8. Deconvolution by the method of circuiants with I = 10 (07/02/82, 15:.57:53. KZ = 100). 
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++ v--7-- 
600.0 800.0 1000.3 1200.0 1400.0 1600.0 18OO.C 

TIME 

FIG. 9. Deconvolution by the method of circulants with i = 100 (07/02/82. 15:35: 19. KZ = LOO). 

computer (CRAY in the present work) than the method of circuiants where only a 
fraction of a second was required per case for our example. We expect that the ratio 
of times is problem-sp~ci~c. 

5. CONCLUSIONS 

While the problem of deconvolution has confronted the experimentalist for a long 
time, it would appear that the first formal analysis of the problem was given by 
Van Cittert [lo] in 1931. Variations on his iterative procedure have appeared from 
time to time and his method has recently been adapted to noisy data by Thomas 
[ II]. Since 193 1, numerous other procedures ] 12 ], differing from those discussed in 
this paper, have been developed. It is manifestly impossible to compare the present 
work with this large corpus of papers. 

It is useful, however, to compare the present results with a contemporary 
efficacious technique operating on the same impulse function and noisy data stream 
used in this paper. E. Hodson and J. Canada’ of this laboratory have applied the 
computer program CONFOLD ] 131 with the result shown in Fig. 10. CONFOLD is 
a program which determines the minimum required truncation of the impulse function 
by iteration, and unfolds a Gaussian filter, producing a constrained inverse which is 
then folded with the data. The reader should notice the relative degrees of smearing at 

’ Private communication. We thank these authors for their help. 
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N 
d I , 
1 0 20 YO 64 80 100 I20 1110 160 

TIME 

FIG. 10. Deconvolution by CONFOLD. 

the peaks and the relative degrees of tilling in at the minimum of the unfold data by 
the different methods reported here. 

We feel that the minimum length constraint on a deconvolution procedure is a 
viable technique that is computationally robust and makes minimum demands on a 
starting solution. By synthetic numerical example we have demonstrated, by this 
technique, useful recovery of information from a noisy data stream. We have further 
provided a rapid approximation procedure which is very likely considerably faster 
than many extant iterative procedures and is well adapted to small computers. 
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